MESSENGER RNA FROM ARGININE AND PHOSPHOENOLPYRUVATE CARBOXYLASE GENES IN arg R⁺ AND arg R⁻ STRAINS OF E. COLI K-12

Raymond CUNIN and Nicolas GLANSDORFF

Erfelijkheidsleer en Microbiologie, Vrije Universiteit te Brussel
Emile Gryzonlaan 1, 1070 Brussels, Belgium

Received 28 July 1971

1. Introduction

The expression of the nine structural genes of the arginine (arg) regulon is submitted to repression by arginine through the mediation of at least one regulatory molecule: the protein produced by the arg R gene [1-4]. Recent indirect evidence [5-7] suggests that the expression of the arg genes is to some extent under translational control. Up to now, no direct information was available on a possible regulation of their transcription.

The use of ϕ 80 bacteriophages carrying either the whole arg ECBH cluster [8 and B. Konrad, unpublished or an arg E deletion, allowed us to estimate the levels of messenger (m-) RNA complementary to the four genes or only to arg E in repressed and derepressed strains. The data point to the existence of a transcriptional control that does not operate in an arg R strain. While this report was being written, similar results, obtained by Rogers and coworkers [9], came to our knowledge. The two sets of data agree on the essential points and are complementary to each other: here, maximal m-RNA production is examined in genetically derepressed strains, while the other report studies physiological derepression. The present work provides also a direct estimate of the m-RNA originating from arg E alone and from the neighbouring ppc gene (structural determinant of PEP carboxylase). Additional interest arises from the unusual organization pattern of the arg ECBH cluster (see end of the discussion).

2. Materials and methods

All the bacterial strains used are derivatives of E. coli K-12: P678 (λ)⁻, thr, leu, thi, arg R⁺; P₄ X (λ)⁺, met B, arg R⁺; MN42 (λ)⁻, met B, deletion (ppc⁻ arg ECBH); P₄ XB₂ (λ)⁻, met B, arg R.

The ϕ 80 d arg (ECBH)⁺ phage used (B. Konrad, unpublished) is defective and very similar to the other ϕ 80 d arg⁺ available [8] though not, like the latter ones, derived from a heat-inducible parent. A double lysogen, harbouring this phage and the heat inducible ϕ 80 h λ c857 (thermosensitive λ type repressor), is nevertheless heat inducible (Glansdorff, unpublished) and has been used in the present experiments. This phage carries also the ppc gene. Phage suspensions were banded in CsCl gradients [8]; the heavier band, corresponding to ϕ 80 d ppc⁺ arg (ECBH)⁺, was isolated and used for DNA extraction.

A ϕ 80 d ppc^+ arg $(CBH)^+$ (carrying a deletion of arg E and of a very small fraction of arg C) has been prepared by selecting homozygote arg⁻strains from a double lysogen $(\phi$ 80)⁺ $(\phi$ 80 d arg⁺)⁺ harbouring the arg EC-I deletion [10].

Phage suspensions in CsCl were dialyzed overnight in TM buffer [8].

DNA was prepared according to [11].

Pulse labelled RNA: the cells were grown at 37° in aerated cultures on: (1) minimal mineral medium 132 [12] supplemented with 0.5% glucose, 200 μ g/ml of L-arginine and other requirements (succinate used as carbon source for MN42). (2) AF medium (arginine-

Table 1						
Percentage total RNA hybridized on ϕ 80 d arg DNA.						

Growth medium (arginine always present: 200 µg/ml)	RNA source	DNA			arg E m-RNA
		ppc ⁺	arg (ECBH) ⁺	ppc ⁺ arg (CBH) ⁺	
Rich	P678(λ) arg R+	(a)	0.075		_
Minimal	$P678(\lambda)^- arg R^+$	(b)	0.097	_	_
Rich	$P_4X(\lambda)^+$ arg R^+	(c)	0.089	_	_
Minimal	$P_4X(\lambda)^+$ arg R^+	(d)	0.140	0.138	0.002
Rich	$P_4XB_2(\lambda)^- arg R$	(e)	0.450	_	_
Minimal	$P_4XB_2(\lambda)^-$ arg R	(f)	0.541	0.460	0.081
Minimal	MN42(λ) ⁻ arg R ⁺ (deletion ppc- arg ECBH)	(g)	0.057	_	

free rich medium [13] supplemented with 0.5% glucose, 200 μ g/ml of L-arginine and containing excess amounts of L-aspartate. When the absorbance reached 4 × 10⁸ cells/ml, ³H-uracil (263 μ Ci, 4 μ g/100 ml) was added for 80 sec together with unlabelled uracil up to a final concentration of 20 μ g/ml. The cultures were then poured on crushed ice 132 medium and the cells harvested by centrifugation.

RNA was extracted according to [14] but without using bentonite. The preparations had specific radioactivities ranging from 4×10^6 to 6×10^6 cpm/ μ g RNA.

Alkali-denatured DNA [15] was fixed to Schleicher and Schuell (type B-6 course) membrane filters, at 25 μ g per filter, in the presence of 4 \times SSC. Hybridization assays were performed as in [15]. For each sample, two to four RNA concentrations were used, each one in duplicate. The hybridization percentage was constant up to at least 200 μ g RNA per assay. Blank disks and "mock hybridizations" [16] were performed and gave similar results.

3. Results and discussion

RNA from a genetically derepressed (arg R) strain and two $arg R^+$ strains, all grown in the presence of arginine, has been hybridized with ppc^+ $arg (ECBH)^+$ DNA (table 1, first column of data) and, in two cases,

with the ppc^+ arg E deletion DNA (second column). The values have been corrected for the counts obtained when hybridizing RNA on ϕ 80 h λ c857 DNA; this background is, as expected, somewhat higher (0.049% to 0.054%) when a lysogenic (λ)⁺ strain is tested rather than a non lysogenic (λ)⁻ one (0.038% to 0.041%). The absolute background (0.057%) is provided by the (ppc^- arg ECBH) deletion strain (table 1, g).

Two different growth media (minimal and rich) have been used. The counts are always higher when RNA originates from a culture on minimal medium: the difference amounts to 0.022% for P678 (b-a) and to an average of 0.071% - between 0.051% (d-c) and 0.091% (f-e) – for P_4X and P_4XB_2 . Since they all are ppc⁺ strains, we may assume that these values reflect different activities of the ppc gene in minimal and rich medium: the latter contains an excess of aspartate and thus provides a physiological situation where the ppc enzyme is dispensable; moreover, aspartate is a potent inhibitor of the enzyme [17] and might also repress its synthesis. We indeed found that in PAX the specific activity of PEP carboxylase amounts respectively to 0.6, 0.4 or 2.7 μ M/hr/mg protein when the strain is grown on minimal medium plus 0.5% L-aspartate as carbon source, rich medium plus glucose or minimal medium plus glucose. The 5- to 6-fold repression of ppc expression encountered when the strain is grown in the presence of aspartate shows that our hybridization assay actually detects the m-RNA produced by the ppc gene.

Regarding the main object of this paper (arg m-RNA), the following information may be gathered from table 1.

The difference between the hybridization percentages obtained with genetically derepressed and repressed strains comes close to 0.4% (0.379 to 0.444%), a value very similar to that reported by Rogers et al. [9] with physiologically derepressed strains (0.3 to 0.5%). We have previously obtained nearly identical values (0.4 to 0.5%) with other DNA preparations than those used in this set of experiments. A maximal estimate of arg ECBH m-RNA in arg R cells (including the very low but unkown background due to the ppc gene in conditions of 6-fold repression of its expression) amounts to 0.393% (table 1, e-g). If this is compared with the message level in repression (a-g), which is 0.018%, a tentative repression coefficient of 22 may be computed.

The amount of arg E messenger alone may be estimated free of background by subtracting the counts obtained with the arg E deletion DNA (table 1, 2nd column) from the ones retained on $arg (ECBH)^+$ DNA; it comes close to a fifth (0.081%) of the total estimate for arg ECBH (0.393%). In conditions of repression, it falls to 0.002%, a value likely to be affected by a considerable relative error.

In conclusion, the difference found between the amounts of arg E or arg ECBH m-RNA synthesized in genetically derepressed cells and in repressed ones shows that the transcription of the cluster is submitted to a control mechanism involving the arg R gene product. Our experimental system also allows estimation of the variations in the amount of m-RNA produced by the neighbouring ppc gene. However, the RNA background resulting from the expression of this gene - even if it is very low in rich medium (about 0.010%) - prevents us from making accurate comparisons between repressibility coefficients expressed in terms of arg m-RNA levels and in terms of enzyme specific activities. When available, arg deletions leaving ppc intact will allow background-free estimates of arg ECBH m-RNA in repressed conditions and allow such comparisons; they would provide direct information on the possible translational control referred to in the Introduction. The enzyme synthesis repressibility coefficient amounts to 18 for arg E and to 50 to 70 for arg C, B and H [10]; the latter three constitute a clockwise polarized operon

with control elements located at the E-C boundary [10]. Recent results from this and other laboratories [7, 18] suggest that the control elements of arg E also lie between E and C and raise the possibility that arg E and arg CBH share a complex common operator-promotor region. Further m-RNA measurements, this time performed on separated (light and heavy) DNA chains of the transducing phage will help in solving the functional organization of the arg cluster.

Acknowledgements

Thanks are due to Miss C. Barjasse for excellent technical assistance and to G. De Hauwer, R. Lavallé and E. Vanderwinkel for helpful discussions. N.G. holds a research grant from the Belgian National Foundation for Scientific Research.

References

- [1] L. Gorini, W. Gundersen and M. Burger, Cold Spring Harbor Symp. Quant. Biol. 26 (1961) 173.
- [2] W.K. Maas, Cold Spring Harbor Symp. Quant. Biol. 26 (1961) 183.
- [3] G.A. Jacoby and L. Gorini, J. Mol. Biol. 39 (1969) 73.
- [4] S. Udaka, Nature 228 (1970) 336.
- [5] W.L. McLellan and H.J. Vogel, Proc. Natl. Acad. Sci. U.S. 67 (1970) 1703.
- [6] R. Lavallé, J. Mol. Biol. 51 (1970) 449.
- [7] D. Elseviers, R. Cunin, Ashcroft, Baumberg and N. Glansdorff, in preparation.
- [8] R. Press, N. Glansdorff, P. Miner, J. De Vries, R. Kadner and W.K. Maas, Proc. Natl. Acad. Sci. U.S. 68 (1971) 795
- [9] P. Rogers, R. Kryzek, T.M. Kaden and E. Arfman, in press.
- [10] R. Cunin, D. Elseviers, G. Sand, G. Freundlich and N. Glansdorff, Mol. Gen. Genet. 106 (1969) 32.
- [11] A.D. Kaiser and D.S. Hogness, J. Mol. Biol. 2 (1960) 392.
- [12] N. Glansdorff, Genetics 51 (1965) 167.
- [13] R.P. Novick and W.K. Maas, J. Bacteriol. 81 (1961) 236.
- [14] D. Hayes, F. Hayes and M. Guérin, J. Mol. Biol. 18 (1966) 499.
- [15] D. Gillespie and S. Spiegelman, J. Mol. Biol. 12 (1965) 829.
- [16] D. Gillespie, in: Methods in Enzymology, Vol. XII part B, eds. L. Grossman and K. Moldave (Academic Press, London, New York, 1968) p. 641.
- [17] K. Izui, A. Iwatani, T. Nishikido, H. Katsuki and S. Tanaka, Biochim. Biophys. Acta 139 (1967) 188.
- [18] G. Jacoby, in preparation.